Сетевой проект Закон и порядок: удивительный мир прогрессий/Числа Фибоначчи
Тел. +7(4922) 77-85-99
М.тел. 89157642232
ЗАКОН И ПОРЯДОК:
УДИВИТЕЛЬНЫЙ МИР ПРОГРЕССИЙ
Сроки этапа: 05 февраля 2022 г. - 20 февраля 2022 г.
|
Среди современников ему не было равных. И в последующие три столетия нельзя назвать ни одного учёного такого масштаба. Творчество Леонаро Пизанского оказало решающее влияние на развитие алгебры и теории чисел, в частности на исследования таких математиков, как Франсуа Виет и Пьер Ферма.
В 1202 году Леонардо Пизанский составил «Книгу абака» (лат. Liber abaci)- настоящую энциклопедию математических знаний его эпохи. Именно в этой книге впервые приводится решение знаменитой задачи о кроликах.
|
Ответ даётся суммой ряда 1+1+2+3+5+8+ … + 144. Каждый член этого ряда, начиная с третьего, является суммой двух предыдущих. Последовательность 1, 1, 2, 3, 5, 8, …, 144, … в дальнейшем стали называть последовательностью Фибоначчи. А почему не последовательностью Пизанского? Поиску ответа на этот и другие вопросы будет посвящен второй этап нашего проекта.
Проектное задание
|
---|
- Изучите биографию и научную деятельность Леонарда Пизанского. На основе проведенного мини-исследования составьте ленту времени с указанием основных дат (периодов) жизни, вклада учёного в развитие математики
- Перечислите свойства чисел Фибоначчи
- Опишите ситуации, в которых можно обнаружить числа Фибоначчи (математические и не только). Сопроводите каждую ситуацию примером, чертежом или рисунком, описанием алгоритма решения соответствующей математической задачи
- Опубликуйте результаты исследования на сайте Interacty.me ; разместите ссылку на своей странице
Технологии выполнения задания
|
---|
|
Критерии оценки представленных работ:
|
---|
- Содержание ленты времени, отражающей биографию и научную деятельность Леонардо Пизанского:
- на ленте времени представлены не менее 5 хронологических меток: каждая метка имеет хронологический заголовок (дата или период), представлена постом, имеющим заголовок и содержащим лаконичный авторский текст по теме проектного задания - до 2 баллов за метку, но не более 20 баллов;
- информативность ленты (отражение наиболее значимых событий в жизни математика) - до 3 баллов
- отражение особого вклада Леонардо Пизанского в развитие математики - до 3 баллов
- Определены основные свойства, которыми обладает числовая последовательность чисел Фибоначчи - до 2 баллов за свойство, но не более 40 баллов;
- Описаны ситуации, в которых обнаруживаются последовательности чисел Фибоначчи:
- в различных средах окружающего мира - 1 балл за каждый пример, но не более 10 баллов;
- в текстовых математических задачах - до 5 баллов
- По результатам работы создан и размещен на одном из облачных сервисов (Яндекс.Диск, Мail.Ru) pdf-документ; ссылка на документ опубликована на странице участника - 1 балл
- Оформление ленты времени:
- читабельность текста (с минимумом встроенных в текст гиперссылок) для каждой метки - до 3 баллов
- оптимальное использование разнообразных медиаресурсов (графических (фотографий, рисунков, репродукций, карт), видео) - до 5 баллов
- ссылки на первоисточник (интерактивное название сайта; название библиографического издания с указание автора, издательства, года издания и используемых страниц)- до 2 баллов
- эстетичность ленты - до 3 баллов
- Оформление раздела "Свойства чисел Фибоначчи":
- использование единого стиля во всех фрагментах текста или слайдах слайд-шоу - до 2 баллов
- качество математического текста (научная строгость оформления, читабельность текста) - до 5 баллов
- Оформление раздела "Числа Фибоначчи вокруг нас":
- использование единого стиля во всех фрагментах текста или слайдах слайд-шоу - до 2 баллов
- оптимальное использование разнообразных медиаресурсов (графических (фотографий, рисунков, репродукций, карт), видео) - до 5 баллов
- качество математического текста (научная строгость оформления, читабельность текста) - до 5 баллов
- Используемая навигация обеспечивает доступность и удобство восприятия информации - до 3 баллов
- Бонус за содержание - до 5 баллов
- Бонус за оформление - до 3 баллов