Сетевой проект Закон и порядок: удивительный мир прогрессий/Арифметическая прогрессия

Материал из wiki Владимир
Перейти к навигации Перейти к поиску


ЗАКОН И ПОРЯДОК:

УДИВИТЕЛЬНЫЙ МИР ПРОГРЕССИЙ

Сроки этапа: 21 февраля 2022 г. - 07 марта 2022 г.

Ufecc.jpg

"Не знание, а процесс обучения, и не обладание, а ощущение того, что ты пришел к чему-то, доставляют наибольшее наслаждение"

- Карл Фридрих Гаусс (1777-1855), немецкий математик, механик, физик, астроном и геодезист

Третий этап нашего проекта посвящен одному из популярных видов прогрессий - арифметической, «королю математики» - Карлу Фридриху Гауссу и математическому чуду - треугольнику Паскаля (о последнем - наш проект 2021 года - Тайны натурального ряда чисел
Величайший немецкий математик, астроном и физик Карл Гаусс родился в городе Брауншвейг (Германия). Его отец, садовник и фонтанный мастер, славился искусством быстро и легко считать. Эта способность перешла к сыну, говорившему позднее, что он «умел считать раньше, чем говорить».
Известна история: когда Карлу Гауссу было 9 лет, школьный учитель Бюттнер предложил своим ученикам сложить 100 первых натуральных чисел. И вот в то время как остальные ученики едва приступили к заданию, Гаусс уже положил свою доску на стол учителя, воскликнув: Ligget se! («Вот оно!»). Бюттнер подумал, что Гаусс просто дерзит ему, но когда он посмотрел на доску, то обнаружил, что на ней записан правильный ответ — 5050, причем не было приведено ни одного этапа вычислений.

ImgAP 4.png

Юный Гаусс, сам того не понимая, применил формулу суммы членов арифметической прогрессии.

Одним из величайших трудов Карла Фридриха Гаусса стала книга Disquisitiones arithmeticae («Арифметические исследования»), увидевшая свет в 1801 г., благодаря которой математика обогатилась новой дисциплиной - теорией чисел.
В своем исследовании Гаусс упоминает так называемые треугольные числа - первые в семействе фигурных чисел. На первый взгляд, какое отношение они имеют к арифметической прогрессии? Но внимательное изучение их свойств позволит сделать удивительные открытия в мире числовых последовательностей.

Pascall.png Что же такое фигурные числа? Какую теорему о треугольных числах доказал 19-летний Карл Гаусс, воскликнувший как некогда Архимед, "Эврика!"? Как связаны между собой фигурные числа и арифметические прогрессии? Верно ли, что ряды чисел в треугольнике Паскаля - арифметические прогрессии высших порядков?

Что знали предшественники Гаусса об арифметической прогрессии и что им еще предстояло узнать? В каком направлении идет изучение последовательностей, родственных арифметической прогрессии, в современной математике? Надеемся, поиск ответов на эти вопросы откроет нашим участникам пока неизвестные им страницы истории математики.

Проектное задание

  1. Для участников 7-8 классов:
    • Выясните, в работах каких ученых и в каких древних задачах обнаруживается арифметическая прогрессия? В каких областях, помимо математики, можно ее встретить? Подтвердите каждый случай наглядным примером
    • Определите, в каком направлении развивается современное исследование прогрессий
    • На основе краеведческого материала составьте текстовую задачу на арифметическую прогрессию; включите ее текст и решение в свое исследование
    • Создайте авторский математический блог и опубликуйте результаты исследования на его страницах; разместите ссылку на своей странице
    • Сохраните результаты работы в формате pdf-документа (допускаются скриншоты), разместите его на любом облачном сервисе и опубликуйте ссылку на pdf-документ на своей wiki-странице
  2. Для участников 9-10 классов:
    • Изучите жизнь Карла Фридриха Гаусса, определите наиболее яркие ее эпизоды, связанные с математическими достижениями великого математика
    • Опишите разные виды арифметических прогрессий: как они образуются? с какими числами связаны? Приведите примеры для каждого вида
    • Исследуйте треугольник Паскаля и опишите одну из обнаруженных арифметических прогрессий высших порядков (например, 8-го, 9-го и т.д.)
    • Составьте свою арифметическую прогрессию 5-го порядка; включите алгоритм поиска первых 10-ти членов этой прогрессии в свое исследование
    • Создайте авторский математический блог и опубликуйте результаты исследования на его страницах; разместите ссылку на своей странице
    • Сохраните результаты работы в формате pdf-документа (допускаются скриншоты), разместите его на любом облачном сервисе и опубликуйте ссылку на pdf-документ на своей wiki-странице
Технологии выполнения задания

UfeccFU.png
Критерии оценки представленных работ:
  1. Содержание Ленты времени, отражающей биографию и научную деятельность Леонардо Пизанского:
    • на Ленте времени представлены не менее 5 хронологических меток: каждая метка имеет хронологический заголовок (дата или период), представлена постом, имеющим заголовок и содержащим лаконичный авторский текст по теме проектного задания -  до 2 баллов за метку, но не более 20 баллов;
    • информативность Ленты (отражение наиболее значимых событий в жизни математика) - до  3 баллов
    • отражение особого вклада Леонардо Пизанского в развитие математики - до  3 баллов
  2. Определены основные свойства, которыми обладает числовая последовательность чисел Фибоначчи -  до 2 баллов за свойство, но не более 40 баллов;
  3. Описаны ситуации, в которых обнаруживаются последовательности чисел Фибоначчи:
    • в различных средах окружающего мира -   1 балл за каждый пример, но не более 10 баллов;
    • в текстовых математических задачах - до 5 баллов
  4. По результатам работы создан и размещен на одном из облачных сервисов (Яндекс.Диск, Мail.Ru) pdf-документ; ссылка на документ опубликована на странице участника -  1 балл
  5. Оформление Ленты времени:
    • читабельность текста (с минимумом встроенных в текст гиперссылок) для каждой метки - до 3 баллов
    • оптимальное использование разнообразных медиаресурсов (графических (фотографий, рисунков, репродукций, карт), видео) - до 5 баллов
    • ссылки на первоисточник (интерактивное название сайта; название библиографического издания с указание автора, издательства, года издания и используемых страниц)- до 2 баллов
    • эстетичность Ленты - до 3 баллов
  6. Оформление раздела "Свойства чисел Фибоначчи":
    • использование единого стиля во всех фрагментах текста или слайдах слайд-шоу - до 2  баллов
    • качество математического текста (научная строгость оформления, читабельность текста) - до 5  баллов
  7. Оформление раздела "Числа Фибоначчи вокруг нас":
    • использование единого стиля во всех фрагментах текста или слайдах слайд-шоу - до 2  баллов
    • оптимальное использование разнообразных медиаресурсов (графических (фотографий, рисунков, репродукций, карт), видео) - до 5 баллов
    • качество математического текста (научная строгость оформления, читабельность текста) - до 5  баллов
  8. Используемая навигация обеспечивает доступность и удобство восприятия информации - до 3  баллов
  9. Бонус за содержание - до 5 баллов
  10. Бонус за оформление - до 3 баллов
Максимальное количество баллов  - 125